\(\int \frac {(2+e x)^{5/2}}{\sqrt [4]{12-3 e^2 x^2}} \, dx\) [937]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [F]
   Fricas [C] (verification not implemented)
   Sympy [F]
   Maxima [F]
   Giac [F(-2)]
   Mupad [F(-1)]

Optimal result

Integrand size = 24, antiderivative size = 340 \[ \int \frac {(2+e x)^{5/2}}{\sqrt [4]{12-3 e^2 x^2}} \, dx=-\frac {5\ 3^{3/4} (2-e x)^{3/4} \sqrt [4]{2+e x}}{2 e}-\frac {3^{3/4} (2-e x)^{3/4} (2+e x)^{5/4}}{2 e}-\frac {(2-e x)^{3/4} (2+e x)^{9/4}}{3 \sqrt [4]{3} e}+\frac {5\ 3^{3/4} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{2-e x}}{\sqrt [4]{2+e x}}\right )}{\sqrt {2} e}-\frac {5\ 3^{3/4} \arctan \left (1+\frac {\sqrt {2} \sqrt [4]{2-e x}}{\sqrt [4]{2+e x}}\right )}{\sqrt {2} e}-\frac {5\ 3^{3/4} \log \left (\frac {\sqrt {6-3 e x}-\sqrt {6} \sqrt [4]{2-e x} \sqrt [4]{2+e x}+\sqrt {3} \sqrt {2+e x}}{\sqrt {2+e x}}\right )}{2 \sqrt {2} e}+\frac {5\ 3^{3/4} \log \left (\frac {\sqrt {6-3 e x}+\sqrt {6} \sqrt [4]{2-e x} \sqrt [4]{2+e x}+\sqrt {3} \sqrt {2+e x}}{\sqrt {2+e x}}\right )}{2 \sqrt {2} e} \]

[Out]

-5/2*3^(3/4)*(-e*x+2)^(3/4)*(e*x+2)^(1/4)/e-1/2*3^(3/4)*(-e*x+2)^(3/4)*(e*x+2)^(5/4)/e-1/9*(-e*x+2)^(3/4)*(e*x
+2)^(9/4)*3^(3/4)/e-5/2*3^(3/4)*arctan(-1+(-e*x+2)^(1/4)*2^(1/2)/(e*x+2)^(1/4))/e*2^(1/2)-5/2*3^(3/4)*arctan(1
+(-e*x+2)^(1/4)*2^(1/2)/(e*x+2)^(1/4))/e*2^(1/2)-5/4*3^(3/4)*ln(3^(1/2)-(-e*x+2)^(1/4)*6^(1/2)/(e*x+2)^(1/4)+3
^(1/2)*(-e*x+2)^(1/2)/(e*x+2)^(1/2))/e*2^(1/2)+5/4*3^(3/4)*ln(3^(1/2)+(-e*x+2)^(1/4)*6^(1/2)/(e*x+2)^(1/4)+3^(
1/2)*(-e*x+2)^(1/2)/(e*x+2)^(1/2))/e*2^(1/2)

Rubi [A] (verified)

Time = 0.21 (sec) , antiderivative size = 340, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.417, Rules used = {689, 52, 65, 338, 303, 1176, 631, 210, 1179, 642} \[ \int \frac {(2+e x)^{5/2}}{\sqrt [4]{12-3 e^2 x^2}} \, dx=\frac {5\ 3^{3/4} \arctan \left (1-\frac {\sqrt {2} \sqrt [4]{2-e x}}{\sqrt [4]{e x+2}}\right )}{\sqrt {2} e}-\frac {5\ 3^{3/4} \arctan \left (\frac {\sqrt {2} \sqrt [4]{2-e x}}{\sqrt [4]{e x+2}}+1\right )}{\sqrt {2} e}-\frac {(2-e x)^{3/4} (e x+2)^{9/4}}{3 \sqrt [4]{3} e}-\frac {3^{3/4} (2-e x)^{3/4} (e x+2)^{5/4}}{2 e}-\frac {5\ 3^{3/4} (2-e x)^{3/4} \sqrt [4]{e x+2}}{2 e}-\frac {5\ 3^{3/4} \log \left (\frac {\sqrt {6-3 e x}+\sqrt {3} \sqrt {e x+2}-\sqrt {6} \sqrt [4]{2-e x} \sqrt [4]{e x+2}}{\sqrt {e x+2}}\right )}{2 \sqrt {2} e}+\frac {5\ 3^{3/4} \log \left (\frac {\sqrt {6-3 e x}+\sqrt {3} \sqrt {e x+2}+\sqrt {6} \sqrt [4]{2-e x} \sqrt [4]{e x+2}}{\sqrt {e x+2}}\right )}{2 \sqrt {2} e} \]

[In]

Int[(2 + e*x)^(5/2)/(12 - 3*e^2*x^2)^(1/4),x]

[Out]

(-5*3^(3/4)*(2 - e*x)^(3/4)*(2 + e*x)^(1/4))/(2*e) - (3^(3/4)*(2 - e*x)^(3/4)*(2 + e*x)^(5/4))/(2*e) - ((2 - e
*x)^(3/4)*(2 + e*x)^(9/4))/(3*3^(1/4)*e) + (5*3^(3/4)*ArcTan[1 - (Sqrt[2]*(2 - e*x)^(1/4))/(2 + e*x)^(1/4)])/(
Sqrt[2]*e) - (5*3^(3/4)*ArcTan[1 + (Sqrt[2]*(2 - e*x)^(1/4))/(2 + e*x)^(1/4)])/(Sqrt[2]*e) - (5*3^(3/4)*Log[(S
qrt[6 - 3*e*x] - Sqrt[6]*(2 - e*x)^(1/4)*(2 + e*x)^(1/4) + Sqrt[3]*Sqrt[2 + e*x])/Sqrt[2 + e*x]])/(2*Sqrt[2]*e
) + (5*3^(3/4)*Log[(Sqrt[6 - 3*e*x] + Sqrt[6]*(2 - e*x)^(1/4)*(2 + e*x)^(1/4) + Sqrt[3]*Sqrt[2 + e*x])/Sqrt[2
+ e*x]])/(2*Sqrt[2]*e)

Rule 52

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + n + 1))), x] + Dist[n*((b*c - a*d)/(b*(m + n + 1))), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 210

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^(-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])
], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 303

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 338

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[a^(p + (m + 1)/n), Subst[Int[x^m/(1 - b*x^n)^(
p + (m + 1)/n + 1), x], x, x/(a + b*x^n)^(1/n)], x] /; FreeQ[{a, b}, x] && IGtQ[n, 0] && LtQ[-1, p, 0] && NeQ[
p, -2^(-1)] && IntegersQ[m, p + (m + 1)/n]

Rule 631

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[a*(c/b^2)]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 642

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[d*(Log[RemoveContent[a + b*x +
c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 689

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Int[(d + e*x)^(m + p)*(a/d + (c/e)*x)^p,
 x] /; FreeQ[{a, c, d, e, m, p}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && GtQ[a, 0] && GtQ[d, 0] &&  !I
GtQ[m, 0]

Rule 1176

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[2*(d/e), 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1179

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[-2*(d/e), 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps \begin{align*} \text {integral}& = \int \frac {(2+e x)^{9/4}}{\sqrt [4]{6-3 e x}} \, dx \\ & = -\frac {(2-e x)^{3/4} (2+e x)^{9/4}}{3 \sqrt [4]{3} e}+3 \int \frac {(2+e x)^{5/4}}{\sqrt [4]{6-3 e x}} \, dx \\ & = -\frac {3^{3/4} (2-e x)^{3/4} (2+e x)^{5/4}}{2 e}-\frac {(2-e x)^{3/4} (2+e x)^{9/4}}{3 \sqrt [4]{3} e}+\frac {15}{2} \int \frac {\sqrt [4]{2+e x}}{\sqrt [4]{6-3 e x}} \, dx \\ & = -\frac {5\ 3^{3/4} (2-e x)^{3/4} \sqrt [4]{2+e x}}{2 e}-\frac {3^{3/4} (2-e x)^{3/4} (2+e x)^{5/4}}{2 e}-\frac {(2-e x)^{3/4} (2+e x)^{9/4}}{3 \sqrt [4]{3} e}+\frac {15}{2} \int \frac {1}{\sqrt [4]{6-3 e x} (2+e x)^{3/4}} \, dx \\ & = -\frac {5\ 3^{3/4} (2-e x)^{3/4} \sqrt [4]{2+e x}}{2 e}-\frac {3^{3/4} (2-e x)^{3/4} (2+e x)^{5/4}}{2 e}-\frac {(2-e x)^{3/4} (2+e x)^{9/4}}{3 \sqrt [4]{3} e}-\frac {10 \text {Subst}\left (\int \frac {x^2}{\left (4-\frac {x^4}{3}\right )^{3/4}} \, dx,x,\sqrt [4]{6-3 e x}\right )}{e} \\ & = -\frac {5\ 3^{3/4} (2-e x)^{3/4} \sqrt [4]{2+e x}}{2 e}-\frac {3^{3/4} (2-e x)^{3/4} (2+e x)^{5/4}}{2 e}-\frac {(2-e x)^{3/4} (2+e x)^{9/4}}{3 \sqrt [4]{3} e}-\frac {10 \text {Subst}\left (\int \frac {x^2}{1+\frac {x^4}{3}} \, dx,x,\frac {\sqrt [4]{6-3 e x}}{\sqrt [4]{2+e x}}\right )}{e} \\ & = -\frac {5\ 3^{3/4} (2-e x)^{3/4} \sqrt [4]{2+e x}}{2 e}-\frac {3^{3/4} (2-e x)^{3/4} (2+e x)^{5/4}}{2 e}-\frac {(2-e x)^{3/4} (2+e x)^{9/4}}{3 \sqrt [4]{3} e}+\frac {5 \text {Subst}\left (\int \frac {\sqrt {3}-x^2}{1+\frac {x^4}{3}} \, dx,x,\frac {\sqrt [4]{6-3 e x}}{\sqrt [4]{2+e x}}\right )}{e}-\frac {5 \text {Subst}\left (\int \frac {\sqrt {3}+x^2}{1+\frac {x^4}{3}} \, dx,x,\frac {\sqrt [4]{6-3 e x}}{\sqrt [4]{2+e x}}\right )}{e} \\ & = -\frac {5\ 3^{3/4} (2-e x)^{3/4} \sqrt [4]{2+e x}}{2 e}-\frac {3^{3/4} (2-e x)^{3/4} (2+e x)^{5/4}}{2 e}-\frac {(2-e x)^{3/4} (2+e x)^{9/4}}{3 \sqrt [4]{3} e}-\frac {15 \text {Subst}\left (\int \frac {1}{\sqrt {3}-\sqrt {2} \sqrt [4]{3} x+x^2} \, dx,x,\frac {\sqrt [4]{6-3 e x}}{\sqrt [4]{2+e x}}\right )}{2 e}-\frac {15 \text {Subst}\left (\int \frac {1}{\sqrt {3}+\sqrt {2} \sqrt [4]{3} x+x^2} \, dx,x,\frac {\sqrt [4]{6-3 e x}}{\sqrt [4]{2+e x}}\right )}{2 e}-\frac {\left (5\ 3^{3/4}\right ) \text {Subst}\left (\int \frac {\sqrt {2} \sqrt [4]{3}+2 x}{-\sqrt {3}-\sqrt {2} \sqrt [4]{3} x-x^2} \, dx,x,\frac {\sqrt [4]{6-3 e x}}{\sqrt [4]{2+e x}}\right )}{2 \sqrt {2} e}-\frac {\left (5\ 3^{3/4}\right ) \text {Subst}\left (\int \frac {\sqrt {2} \sqrt [4]{3}-2 x}{-\sqrt {3}+\sqrt {2} \sqrt [4]{3} x-x^2} \, dx,x,\frac {\sqrt [4]{6-3 e x}}{\sqrt [4]{2+e x}}\right )}{2 \sqrt {2} e} \\ & = -\frac {5\ 3^{3/4} (2-e x)^{3/4} \sqrt [4]{2+e x}}{2 e}-\frac {3^{3/4} (2-e x)^{3/4} (2+e x)^{5/4}}{2 e}-\frac {(2-e x)^{3/4} (2+e x)^{9/4}}{3 \sqrt [4]{3} e}-\frac {5\ 3^{3/4} \log \left (\frac {\sqrt {2-e x}-\sqrt {2} \sqrt [4]{2-e x} \sqrt [4]{2+e x}+\sqrt {2+e x}}{\sqrt {2+e x}}\right )}{2 \sqrt {2} e}+\frac {5\ 3^{3/4} \log \left (\frac {\sqrt {2-e x}+\sqrt {2} \sqrt [4]{2-e x} \sqrt [4]{2+e x}+\sqrt {2+e x}}{\sqrt {2+e x}}\right )}{2 \sqrt {2} e}-\frac {\left (5\ 3^{3/4}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{2-e x}}{\sqrt [4]{2+e x}}\right )}{\sqrt {2} e}+\frac {\left (5\ 3^{3/4}\right ) \text {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{2-e x}}{\sqrt [4]{2+e x}}\right )}{\sqrt {2} e} \\ & = -\frac {5\ 3^{3/4} (2-e x)^{3/4} \sqrt [4]{2+e x}}{2 e}-\frac {3^{3/4} (2-e x)^{3/4} (2+e x)^{5/4}}{2 e}-\frac {(2-e x)^{3/4} (2+e x)^{9/4}}{3 \sqrt [4]{3} e}+\frac {5\ 3^{3/4} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{2-e x}}{\sqrt [4]{2+e x}}\right )}{\sqrt {2} e}-\frac {5\ 3^{3/4} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{2-e x}}{\sqrt [4]{2+e x}}\right )}{\sqrt {2} e}-\frac {5\ 3^{3/4} \log \left (\frac {\sqrt {2-e x}-\sqrt {2} \sqrt [4]{2-e x} \sqrt [4]{2+e x}+\sqrt {2+e x}}{\sqrt {2+e x}}\right )}{2 \sqrt {2} e}+\frac {5\ 3^{3/4} \log \left (\frac {\sqrt {2-e x}+\sqrt {2} \sqrt [4]{2-e x} \sqrt [4]{2+e x}+\sqrt {2+e x}}{\sqrt {2+e x}}\right )}{2 \sqrt {2} e} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.02 (sec) , antiderivative size = 170, normalized size of antiderivative = 0.50 \[ \int \frac {(2+e x)^{5/2}}{\sqrt [4]{12-3 e^2 x^2}} \, dx=\frac {-\left (4-e^2 x^2\right )^{3/4} \left (71+17 e x+2 e^2 x^2\right )-45 \sqrt {4+2 e x} \arctan \left (\frac {\sqrt {4+2 e x} \sqrt [4]{4-e^2 x^2}}{2+e x-\sqrt {4-e^2 x^2}}\right )+45 \sqrt {4+2 e x} \text {arctanh}\left (\frac {2+e x+\sqrt {4-e^2 x^2}}{\sqrt {4+2 e x} \sqrt [4]{4-e^2 x^2}}\right )}{6 \sqrt [4]{3} e \sqrt {2+e x}} \]

[In]

Integrate[(2 + e*x)^(5/2)/(12 - 3*e^2*x^2)^(1/4),x]

[Out]

(-((4 - e^2*x^2)^(3/4)*(71 + 17*e*x + 2*e^2*x^2)) - 45*Sqrt[4 + 2*e*x]*ArcTan[(Sqrt[4 + 2*e*x]*(4 - e^2*x^2)^(
1/4))/(2 + e*x - Sqrt[4 - e^2*x^2])] + 45*Sqrt[4 + 2*e*x]*ArcTanh[(2 + e*x + Sqrt[4 - e^2*x^2])/(Sqrt[4 + 2*e*
x]*(4 - e^2*x^2)^(1/4))])/(6*3^(1/4)*e*Sqrt[2 + e*x])

Maple [F]

\[\int \frac {\left (e x +2\right )^{\frac {5}{2}}}{\left (-3 x^{2} e^{2}+12\right )^{\frac {1}{4}}}d x\]

[In]

int((e*x+2)^(5/2)/(-3*e^2*x^2+12)^(1/4),x)

[Out]

int((e*x+2)^(5/2)/(-3*e^2*x^2+12)^(1/4),x)

Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.40 (sec) , antiderivative size = 366, normalized size of antiderivative = 1.08 \[ \int \frac {(2+e x)^{5/2}}{\sqrt [4]{12-3 e^2 x^2}} \, dx=-\frac {45 \cdot 27^{\frac {1}{4}} {\left (e^{2} x + 2 \, e\right )} \left (-\frac {1}{e^{4}}\right )^{\frac {1}{4}} \log \left (\frac {27^{\frac {1}{4}} {\left (e^{3} x^{2} - 4 \, e\right )} \left (-\frac {1}{e^{4}}\right )^{\frac {1}{4}} + {\left (-3 \, e^{2} x^{2} + 12\right )}^{\frac {3}{4}} \sqrt {e x + 2}}{e^{2} x^{2} - 4}\right ) - 45 \cdot 27^{\frac {1}{4}} {\left (e^{2} x + 2 \, e\right )} \left (-\frac {1}{e^{4}}\right )^{\frac {1}{4}} \log \left (-\frac {27^{\frac {1}{4}} {\left (e^{3} x^{2} - 4 \, e\right )} \left (-\frac {1}{e^{4}}\right )^{\frac {1}{4}} - {\left (-3 \, e^{2} x^{2} + 12\right )}^{\frac {3}{4}} \sqrt {e x + 2}}{e^{2} x^{2} - 4}\right ) + 45 \cdot 27^{\frac {1}{4}} {\left (-i \, e^{2} x - 2 i \, e\right )} \left (-\frac {1}{e^{4}}\right )^{\frac {1}{4}} \log \left (-\frac {27^{\frac {1}{4}} {\left (i \, e^{3} x^{2} - 4 i \, e\right )} \left (-\frac {1}{e^{4}}\right )^{\frac {1}{4}} - {\left (-3 \, e^{2} x^{2} + 12\right )}^{\frac {3}{4}} \sqrt {e x + 2}}{e^{2} x^{2} - 4}\right ) + 45 \cdot 27^{\frac {1}{4}} {\left (i \, e^{2} x + 2 i \, e\right )} \left (-\frac {1}{e^{4}}\right )^{\frac {1}{4}} \log \left (-\frac {27^{\frac {1}{4}} {\left (-i \, e^{3} x^{2} + 4 i \, e\right )} \left (-\frac {1}{e^{4}}\right )^{\frac {1}{4}} - {\left (-3 \, e^{2} x^{2} + 12\right )}^{\frac {3}{4}} \sqrt {e x + 2}}{e^{2} x^{2} - 4}\right ) + {\left (2 \, e^{2} x^{2} + 17 \, e x + 71\right )} {\left (-3 \, e^{2} x^{2} + 12\right )}^{\frac {3}{4}} \sqrt {e x + 2}}{18 \, {\left (e^{2} x + 2 \, e\right )}} \]

[In]

integrate((e*x+2)^(5/2)/(-3*e^2*x^2+12)^(1/4),x, algorithm="fricas")

[Out]

-1/18*(45*27^(1/4)*(e^2*x + 2*e)*(-1/e^4)^(1/4)*log((27^(1/4)*(e^3*x^2 - 4*e)*(-1/e^4)^(1/4) + (-3*e^2*x^2 + 1
2)^(3/4)*sqrt(e*x + 2))/(e^2*x^2 - 4)) - 45*27^(1/4)*(e^2*x + 2*e)*(-1/e^4)^(1/4)*log(-(27^(1/4)*(e^3*x^2 - 4*
e)*(-1/e^4)^(1/4) - (-3*e^2*x^2 + 12)^(3/4)*sqrt(e*x + 2))/(e^2*x^2 - 4)) + 45*27^(1/4)*(-I*e^2*x - 2*I*e)*(-1
/e^4)^(1/4)*log(-(27^(1/4)*(I*e^3*x^2 - 4*I*e)*(-1/e^4)^(1/4) - (-3*e^2*x^2 + 12)^(3/4)*sqrt(e*x + 2))/(e^2*x^
2 - 4)) + 45*27^(1/4)*(I*e^2*x + 2*I*e)*(-1/e^4)^(1/4)*log(-(27^(1/4)*(-I*e^3*x^2 + 4*I*e)*(-1/e^4)^(1/4) - (-
3*e^2*x^2 + 12)^(3/4)*sqrt(e*x + 2))/(e^2*x^2 - 4)) + (2*e^2*x^2 + 17*e*x + 71)*(-3*e^2*x^2 + 12)^(3/4)*sqrt(e
*x + 2))/(e^2*x + 2*e)

Sympy [F]

\[ \int \frac {(2+e x)^{5/2}}{\sqrt [4]{12-3 e^2 x^2}} \, dx=\frac {3^{\frac {3}{4}} \left (\int \frac {4 \sqrt {e x + 2}}{\sqrt [4]{- e^{2} x^{2} + 4}}\, dx + \int \frac {4 e x \sqrt {e x + 2}}{\sqrt [4]{- e^{2} x^{2} + 4}}\, dx + \int \frac {e^{2} x^{2} \sqrt {e x + 2}}{\sqrt [4]{- e^{2} x^{2} + 4}}\, dx\right )}{3} \]

[In]

integrate((e*x+2)**(5/2)/(-3*e**2*x**2+12)**(1/4),x)

[Out]

3**(3/4)*(Integral(4*sqrt(e*x + 2)/(-e**2*x**2 + 4)**(1/4), x) + Integral(4*e*x*sqrt(e*x + 2)/(-e**2*x**2 + 4)
**(1/4), x) + Integral(e**2*x**2*sqrt(e*x + 2)/(-e**2*x**2 + 4)**(1/4), x))/3

Maxima [F]

\[ \int \frac {(2+e x)^{5/2}}{\sqrt [4]{12-3 e^2 x^2}} \, dx=\int { \frac {{\left (e x + 2\right )}^{\frac {5}{2}}}{{\left (-3 \, e^{2} x^{2} + 12\right )}^{\frac {1}{4}}} \,d x } \]

[In]

integrate((e*x+2)^(5/2)/(-3*e^2*x^2+12)^(1/4),x, algorithm="maxima")

[Out]

integrate((e*x + 2)^(5/2)/(-3*e^2*x^2 + 12)^(1/4), x)

Giac [F(-2)]

Exception generated. \[ \int \frac {(2+e x)^{5/2}}{\sqrt [4]{12-3 e^2 x^2}} \, dx=\text {Exception raised: TypeError} \]

[In]

integrate((e*x+2)^(5/2)/(-3*e^2*x^2+12)^(1/4),x, algorithm="giac")

[Out]

Exception raised: TypeError >> an error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:sym2poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

Mupad [F(-1)]

Timed out. \[ \int \frac {(2+e x)^{5/2}}{\sqrt [4]{12-3 e^2 x^2}} \, dx=\int \frac {{\left (e\,x+2\right )}^{5/2}}{{\left (12-3\,e^2\,x^2\right )}^{1/4}} \,d x \]

[In]

int((e*x + 2)^(5/2)/(12 - 3*e^2*x^2)^(1/4),x)

[Out]

int((e*x + 2)^(5/2)/(12 - 3*e^2*x^2)^(1/4), x)